L’eau de la terre (sous forme solide, liquide et gazeuse), dont la quantité totale est fixe, la question est de savoir comment les formes d’existence changent et comment elles se déplacent d’un endroit à l’autre, pour evitez les catastrophes naturelles!
Nous reviendrons par la suite sur les problemes d'amenagement des territoires et des moyens geotechniques ! Je dois au prealable en faire une synthese .
L’eau existe sur Terre sous les trois états : solide, liquide et gazeux et les trois états coexistent sur terre comme dans l’atmosphère.

Tout comme l’oxygène, l’eau n’est pas une ressource originelle de la planète Terre. Représentant 1 360 millions de km3, 70% de la surface de la planète..Elle est certainement venue en grande partie de l’extérieur, lors d’un bombardement de la Terre par des météorites.
Sous l’effet du soleil, l’eau s’évapore et monte vers l’atmosphère. On estime à 1 000 km3 l’eau des océans qui, chaque jour, s’évapore. Dans les basses couches atmosphériques, elle emmagasine de la chaleur et monte ainsi. Peu à peu, elle se refroidit tout en étant redistribuée par les courants atmosphériques. L’action du froid condense cette eau qui retombe sous forme de précipitations (neige ou pluie). 61 % de cette eau s’évapore, 16 % ruisselle et rejoint les cours d’eau et 23 % s’infiltre et alimente les nappes et rivières souterraines.
La masse d’eau totale de l’hydrosphère n’évolue pas au cours des années, elle reste toujours constante : l’eau s’évapore, forme la vapeur d’eau qui, en se transformant en pluie, va alimenter les mers, les cours d’eau et les nappes souterraines. On peut appliquer au cycle de l’eau la fameuse phrase de Lavoisier : "Rien ne se perd, rien ne se crée, tout se transforme".
L’eau change d’état au cours de son cycle, passant de l’état gazeux à l’état liquide ou à l’état solide. Cependant, sa quantité est restée inchangée depuis quatre milliards d’années, date de son apparition sur terre.
Dans l’atmosphère, l’eau est surtout présente à l’état de vapeur. Puis sous l’effet du refroidissement, l’eau passe de l’état de vapeur à l’état liquide. Cette eau liquide est concentrée dans les nuages puis dans les précipitations.
Une fois que l’eau a atteint le sol, son cycle va se dérouler de façon essentiellement liquide. Seule une toute petite partie de cette eau est en mouvement, la grande majorité étant stockée dans les nappes souterraines. Une partie de l’eau est utilisée par les plantes, le reste est drainé vers les rivières ou dans les nappes. Les racines des plantes vont capter l’eau, qui s’évaporera ensuite par le système de transpiration des feuilles. Cette transpiration constitue de la vapeur d’eau. De la même façon, les lacs, les océans, vont évaporer une partie de leur eau.
La Terre est une machine qui recycle l’eau en permanence de manière naturelle. Les prélèvements humains sont infimes comparés à la circulation globale.
L’eau terrestre se renouvelle selon un cycle dont les moteurs sont l’énergie solaire et la gravité. L’eau s’évapore, se condense dans les nuages et retombe en pluie ou en neige au-dessus des terres et des mers. Une faible part ruisselle vers les océans, le plus grand des réservoirs. Avant de participer au cycle, une molécule d’eau reste une semaine dans l’atmosphère ou dans les êtres vivants, 16 jours dans les rivières, 17 ans dans les lacs, 1 400 ans dans les eaux souterraines, 2 500 ans dans les océans, jusqu’à plusieurs centaines de milliers d’années dans les calottes glaciaires .
Dans le domaine des nuages, on assiste là encore à des structures émergentes issues du désordre, fondées sur trois niveaux :


les nuages d’altitude constitués de cristaux ou « cirro » (eux-mêmes divisés en trois niveaux cirrus, cirro-cumulus et cirro-stratus)
les nuages d’étage moyen constitués de gouttes et de cristaux ou « alto »
les nuages d’étage inférieur constituées de gouttelettes ou de brouillard ou « strato »
L’importance des nuages dans le climat est considérable et ils peuvent favoriser aussi bien le réchauffement que le refroidissement. L’impact des nuages, en température, en captation de la chaleur ou en renvoi des rayons solaires, est 40 fois supérieur à celui des gaz à effet de serre Les nuages de gouttelettes d’eau de basse altitude refroidissent la Terre alors que ceux de glace de haute altitude la réchauffent.
La vapeur d’eau des nuages a un effet de serre plus grand que le CO² mais l’autre effet des nuages est la modification de l’albédo de la Terre, c’est-à-dire du pouvoir réfléchissant pour les rayons solaires.
La capacité des nuages à se modifier sans cesse est considérable. Ils s’adaptent à très grande vitesse au réchauffement ou au refroidissement local et d’autant plus facilement que les surface d’eau de la planète sont considérablement et que tout réchauffement de ces surface d’eau entraîne un accroissement de la condensation en nuages qui, lui, peut provoquer un refroidissement rapide et important.
La capacité des nuages à tenir compte des changements des conditions existantes (température, pression, vents) provient du fait que l’état gazeux est plus sensible aux changements que les états solide et liquide. Ainsi, l’inertie calorique des gaz est moins importante que celle des liquides et des solides. Les gaz conservent moins longtemps la chaleur et le froid que les solides ou les liquides.
Les nuages ne sont pas des formes fixes. Ils sont en perpétuelle transformation. Ils sont également des formes émergentes qui disparaissent au bout de temps assez courts pour réapparaître ensuite…
Ce sont des états momentanés de l’eau qui s’appuient sur des poussières présentes dans l’atmosphère pour se condenser.
Ce qui permet au nuage d’avoir les propriétés précédemment citées est le fait qu’il émerge à la transition de plusieurs niveaux d’organisation et donc de plusieurs lois. Il est dépendant d’abord de la pesanteur qui l’amène à tomber sur la Terre. Mais il est mû également par des courants ascendants et descendants de l’atmosphère, provenant des différences de températures et provoquant des différences de densité gazeuse. Les corps les plus denses tombant les premiers, les moins denses ont tendance à monter or les moins denses sont les plus chauds. Ce qui amène l’adage selon lequel « l’air chaud monte ».
L’autre phénomène déterminant est celui dit de la « pression de l’air ». C’est encore un phénomène gravitationnel. En effet, la Terre exerce une force gravitationnelle sur l’atmosphère et l’air a un certain poids. Il en découle qu’au dessous d’une masse d’air, on ressente une force d’autant plus grande que cette masse est plus pesante.
La dynamique de la météorologie est fondée sur des structures auto-organisées comme les nuages ou les états de la neige qui sont des états qui sautent d’un niveau à un autre et dont la base est l’interaction entre des paramètres comme la force des vents, la pression, la température, le degré d’humidité dans l’air et l’ensoleillement (chaleur et fréquence du rayonnement). On pourrait croire que les moyennes décrivent une réalité continue mais il suffit de constater que les états décrits sautent d’un équilibre à un autre très différent de manière brutale pour constater que cela est faux. Ainsi, les nuages ont des structures et des niveaux d’altitude très différents quand on passe d’un équilibre à un autre. Les états de la neige ou de la glace connaissent les mêmes types de sauts. Les états de la météorologie sont eux aussi des discontinuités brutales. La raison fondamentale en est qu’il n’y a jamais un seul facteur mais au moins trois fondamentaux qui rétroagissent et le chaos qui en résulte ne peut trouver que des sauts qui sont des équilibres instables lointains les uns des autres.
Les nuages ont une relation avec la chaleur qui chauffe les surfaces d’eau sous-jacentes mais aussi une relation avec la longueur d’onde des rayons. Par exemple, les nuages d’altitude n’entraînent pratiquement pas de baisse de l’intensité du rayonnement reçu par la Terre tandis que les nuages bas diffusent une grande partie des rayons UV vers l’atmosphère extérieure.
L’aspect d’un nuage dépend de la lumière qu’il reçoit, de la nature, de la dimension, du nombre et de la répartition des particules qui le constituent. Les gouttelettes d’eau d’un nuage proviennent de la condensation de la vapeur d’eau contenue dans l’air. La quantité maximale de vapeur d’eau (gaz invisible) qui peut être contenue dans une masse d’air est fonction de la température : plus l’air est chaud, plus il peut contenir de vapeur d’eau.
Les nuages se forment selon deux processus : la convection et le soulèvement progressif de la masse d’air.
La dissipation des nuages à l’inverse de leur formation se produit lorsque l’air environnant subit un réchauffement et donc un assèchement relatif de son contenu en vapeur d’eau puisqu’un air chaud peut contenir plus de vapeur d’eau qu’un air froid. Ce processus est favorable à l’évaporation, ce qui dissipe les nuages.
Lorsqu’un air saturé (qui contient le maximum possible de vapeur d’eau) se refroidit, son humidité saturante diminue. La vapeur d’eau en excès se condense en fines gouttelettes pour former des nuages. C’est l’ascendance de l’air qui en est la cause la plus fréquente. Le couple évaporation-condensation permet donc un important transfert vertical d’eau et de chaleur. L’eau retombe parfois sur place mais le plus souvent, la vapeur d’eau (et l’énergie potentielle qu’elle représente), ainsi que les nuages, sont transportés par les vents, sur de très longues distances des régions chaudes où l’évaporation est maximale, vers les régions plus sèches et plus froides. Ainsi s’explique l’origine des pluies.
Une part considérable de l’énergie solaire est consommée dans les nuages. Les nuages sont même considérés comme la probable source d’énergie inépuisable de l’avenir…
L’effet de serre est beaucoup moins considérable sur la température que celui des nuages, effet de réchauffement comme de refroidissement. En gros, on peut dire que les nuages de haute altitude refroidissent l’atmosphère terrestre alors que les nuages de basse altitude la réchauffent. Mais, vu la souplesse de formation et de disparition des nuages, ceux-ci s’adaptent aux situation et mènent à une régulation atmosphérique.